Course Title: Generative AI: Math Foundations to Multimodal Modeling

Course Level: Intermediate, Advanced

Course Description: This course provides a comprehensive introduction to the exciting field of generative AI. Students will learn the fundamental concepts, explore various generative models, and gain hands-on experience in developing and applying these models to real-world problems.

Prerequisites:

- Fluency with Python programming
- Basic knowledge of machine learning concepts
- Basic understanding of probability and statistics

Course Objectives: Upon successful completion of this course, students will be able to:

- Understand the fundamental concepts and principles of generative AI.
- Grasp the core concepts of machine learning relevant to generative modeling.
- Explain the differences between various generative models (GANs, VAEs, diffusion models, etc.).
- Implement and train generative models using popular frameworks (e.g., TensorFlow, PyTorch).
- Apply generative AI techniques to solve problems in different domains (e.g., image generation, text generation, music composition).
- Evaluate the performance of generative models and understand their limitations.
- Discuss the ethical implications and societal impact of generative AI.

Course Outline:

Module 1: Mathematical Foundations for Machine Learning

- Linear Algebra
 - Vectors, matrices, eigenvalues, eigenvectors, matrix operations
 - Applications in machine learning (e.g., dimensionality reduction)
- Calculus
 - Derivatives, gradients, chain rule, optimization
 - Applications in machine learning (e.g., gradient descent)
- Probability and Statistics
 - Probability distributions, sampling, Bayes' theorem
 - Statistical inference, hypothesis testing
- Information Theory
 - Entropy, cross-entropy, KL divergence
 - Applications in generative modeling (e.g., VAE loss functions)

Module 2: Machine Learning Fundamentals

- Supervised Learning
 - Classification, regression, model evaluation
 - Common algorithms (e.g., linear regression, logistic regression, decision trees)
- Unsupervised Learning
 - Clustering, dimensionality reduction
 - Common algorithms (e.g., k-means, PCA)

- Deep Learning Basics
 - Neural networks, activation functions, backpropagation
 - Deep learning frameworks (TensorFlow/PyTorch)
 - Building Blocks of Neural Networks
 - Forward propagation: How data flows through a neural network.
 - Loss functions: Measuring the error of a model.
 - Optimization algorithms: Gradient descent and its variants.
 - Backpropagation: Calculating gradients to update network weights.
 - Convolutional Neural Networks (CNNs)
 - Image data and computer vision tasks.
 - CNN architecture: Convolutional layers, pooling layers, feature maps.
 - Applications: Image classification (e.g., MNIST digit recognition).
 - Data preprocessing: Image augmentation, normalization.
 - Training process: Epochs, batches, learning rate.
 - Evaluation metrics: Accuracy, precision, recall.
 - Overfitting and regularization techniques.
 - Recurrent Neural Networks (RNNs) & Long Short-Term Memory (LSTM) Networks
 - Sequential data and natural language processing (NLP).
 - RNN architecture: Hidden state, recurrent connections.
 - Applications: Text classification (e.g., sentiment analysis).
 - Vanishing gradient problem in RNNs.
 - LSTM architecture: Gates and memory cells.
 - Applications: Sequence prediction, language modeling.
 - Word Embeddings and Text Processing
 - Representing words as vectors: Word2Vec, GloVe.
 - Text preprocessing: Tokenization, stemming, lemmatization.
 - Applications: Text classification with word embeddings.
- Introduction to Transformers
 - Attention mechanism: Focusing on important parts of the input.
 - Transformer architecture: Encoder and decoder.
 - GPT Models: Generative pre-training for text generation (e.g., story writing, code generation).
 - BERT Models: Bidirectional encoding for language understanding (e.g., sentiment analysis, question answering).
 - Applications: Machine translation, text summarization.

Module 3: Introduction to Generative AI

- What is Generative AI?
 - Definition, history, and key concepts

- Distinguishing generative models from discriminative models
- Applications and impact of generative AI
- Generative Adversarial Networks (GANs)
 - Introduction to GANs
 - Architecture and training process (generator and discriminator)
 - Loss functions and optimization
 - Variations of GANs
 - DCGAN, CycleGAN, StyleGAN, Progressive Growing of GANs
 - Applications of GANs
 - Image generation, image-to-image translation, style transfer
- Variational Autoencoders (VAEs)
 - Introduction to VAEs
 - Encoder-decoder architecture, latent space, variational inference
 - Loss functions and optimization
 - Applications of VAEs
 - Image generation, representation learning, anomaly detection
- Diffusion Models
 - Introduction to Diffusion Models
 - Forward and reverse diffusion processes, score matching
 - Training and sampling from diffusion models
 - Applications of Diffusion Models
 - Image generation, image editing, super-resolution

Module 4: Multi-modal Modeling

- Definition, motivation, and applications (e.g., image captioning, text-to-image generation, video generation with audio)
- Challenges and opportunities in multimodal generation
- Fusion Mechanisms for Generative Models
 - Concatenation: Combining encoded features
 - Attention Mechanisms: Dynamically focusing on relevant modalities
 - Gated Multimodal Units (GMUs): Selectively combining information
 - Transformer-based Fusion: Using transformers to fuse multimodal sequences
- Multimodal Generative Models
 - Generative Adversarial Networks (GANs) for multimodal generation (e.g., image-toimage translation with text prompts)
 - Variational Autoencoders (VAEs) for multimodal data generation and representation learning
 - Diffusion Models for generating high-quality multimodal content
- Applications and Case Studies
 - Image captioning and storytelling
 - Text-to-image synthesis (e.g., DALL-E 2)
 - Generating music with accompanying visuals
 - Multimodal machine translation

Module 5: Other Generative Models and Advanced Topics

- Autoregressive models (e.g., PixelCNN, WaveNet)
- Flow-based models (e.g., RealNVP, Glow)
- Generative models for text (e.g., RNNs, Transformers)
- Generative models for music and audio
- Ethical considerations in generative AI
- Trends and future directions in generative AI

Assessment:

- Assignments (practical implementation and analysis of generative models)
- Quizzes (testing understanding of key concepts)
- Final Project (developing a generative AI application)
- Class participation

Software and Tools:

- Python programming language
- Deep learning libraries (TensorFlow, PyTorch)
- Jupyter Notebook or Google Colab
- Cloud computing platforms (optional, e.g., AWS, Google Cloud)

Recommended Books:

- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman. (2017). The Elements of Statistical Learning. Springer.