Performance Measurement of Wireless LAN Using Open Source

Vipin M
Communication Research Group
AU – KBC Research Centre
http://comm.au-kbc.org/
Overview

• General Network
 – Why Network Performance Measurement?
 – Network Performance Metrics
 – How Network Performance is Measured?
 – Measurement Methods
 • Ex: Pair Packet
 – Active Probing Tools
 • Ex: Iperf

• Wireless Network
 – Performance Measurement In Wireless LAN
 – PHY / MAC / Higher layer Measurement
 – Measuring Methods and setups

• Effect in Wireless
 – Effect of these Metrics
 – Some Results
Why Network Performance Measurement?

- What are the factors affecting network Performance?
- How this factors affecting Performance?
- Impacts made to the user because of these?
Network performance metrics

- One-Way Delay (OWD)
 - Serialization Delay
 - Propagation Delay
 - Queuing Delay
 - Forwarding Delay
- Round-Trip Time (RTT)
- Delay Variation (Jitter)
- Packet Loss
 - Congestion
 - Errors
- Packet Reordering
- Maximum Transmission Unit (MTU)
- Available Bandwidth (Throughput)
- Link Capacity
- Bandwidth Delay Product (BDP)
How Network Performance is Measured
Measurement Methods

Metric
- Distance
 - Per-hop
 - End-to-End
- Values
 - Bulk Transfer
 - Achievable
 - Bottleneck / Minimum

Methods (Ex: for IP layer)
- Variable Packet Size
- Packet Pairs / Trains
- Self – Loading Periodic Streams
- Parallel Connection
Ex: Pair Packet technique for Capacity

- Two packets of size \(L \) send back to back
- Packets receive with \(\vartheta \) time space dispersion

\[
\text{Time} = \frac{\text{Size} (L)}{\text{Capacity} (C)}
\]

\[
C = \frac{L}{T}
\]

\[
\Delta_{\text{out}} = \frac{L}{C_0}
\]

\[
\Delta_{\text{out}} = \text{Max}(\Delta_{\text{in}}, \frac{L}{C_i})
\]

\[
\text{Dispersion} \ \vartheta = \Delta_{\text{out}} - \Delta_{\text{in}}
\]

\[
\text{Dispersion} \ \vartheta = \text{Max} \left(\frac{L}{C_i} \right)
\]

\[
\text{Min}(C_i) \rightarrow \text{end-to-end Capacity}
\]

\[
\text{Capacity} \ C = \frac{L}{\vartheta}
\]
Active Probing Tools

- Throughput & Delay Measurement Tools
 - Ping
 - Traceroute
 - **Iperf**
 - ThruLay

- Path Characterization & Bandwidth Estimation
 - pathChirp
 - Pathload
 - ABwE
 - Netperf
 - Netttest
Iperf

- **Modes**
 - TCP
 - UDP

- **Components**
 - Server
 - Client

Generate Packet

Receive the packets and send the Report

Network Cloud

P 1

Router

Iperf Client

P 2

Router

Iperf Server
Wireless LAN

- Last Hop Connectivity is Wireless
- Bottleneck will be always at wireless

- What are the Network Parameters that make major effects?
- How it is effecting?
Performance Measurement in WLAN

PHY Layer
- Received Signal Power
- Signal To Noise Ratio
- Bit Error Rate
- Throughput
- Interference

MAC Layer
- Throughput
- Retries
- Received Data Rate
- Queuing Delay
- Packet Error Rate
- Power Consumption
WLAN PHY / MAC Measurement

Using MAC Packet injecting / and process Tools
- Approximate PHY and MAC Parameters can be Measured
- This depend on the implementation of hardware
- Tools like libmac, netlib-80211b etc
WLAN Phy Signal Measurement

- Wispy + Spectool-GTK (Kismet)
- Information from lower layer (Modified driver)

Courtesy: Kismet
WLAN Higher Layer Measurement

- This is as similar as the normal wired network

- Then what is the difference?

- Parameters
 - Jitter
 - Throughput
Performance Measurement in WLAN

- Performance Measurement
 - P1 in Wireless and P2 in Wired Network
Performance Measurement in WLAN

- Performance Measurement
 - P1 in Wireless and P2 in Wired Network
 - Both P1 and P2 in Wireless
Test Setup

Test Setup diagram showing a Linux laptop connected to an access point. The access point is connected to a commercial off-the-shelf product. The diagram includes the following steps:

1. **Linux Laptop + Iperf / Jperf (P1)**
2. **Access Point**
3. **Commercial off the shelf products**
4. **Linux Laptop + Iperf / Jperf (P2)**

Command details:

- **"Iperf -c <host>"**
 - Iperf -c 192.168.2.73
 - \(-p <num_streams>\) test with parallel TCP streams
 - \(-w <buffer_size>\) set socket buffer size

- **"Iperf -s -D > iperfLog "**
 - Iperf -s -D /var/log/iperfLog
 - Iperf can run as a daemon
Server

Client

Wireless Communication Research Group @ AU - KBC
Jperf (GUI for Iperf)
Bandwidth Graph
Effect of these Metrics

• Major parameters effecting the WLAN
 – PHY
 • Interference
 • RSSI
 • SNR
 • Data Rate
 – MAC
 • Queuing Delay
 • Packet Loss / Errors
 • Available Bandwidth (Throughput)
 – IP
 • Delay Variation (Jitter)
 • Available Bandwidth (Throughput)
Channel Interference

![Graph showing channel interference and throughput as a function of distance between AP 1 and AP 2.](image)

Courtesy: [3]
Signal Strength vs. Received Rate

 Courtesy: [2]
Distance Vs Throughput

Throughput Comparison

Throughput (Mbps)

Range (ft)

802.11a

802.11b

Courtesy: Atheros
Thank You

Questions?

Contact: vipintm@au-kbc.org
Reference

1. IEEE 802.11,a,b,g,n IEEE Standard
2. Bandwidth Estimation: Metrics, Measurement Techniques, and Tools, Ravi Prasad CAIDA
3. Enhancement of a WLAN-Based Internet Service, Youngkyu Choi, Multimedia & Wireless Networking Laboratory, School of Electrical Engineering, Seoul National University, Korea.
4. Throughput Measurement for UDP Traffic in an IEEE 802.11g WLAN, Alexander L., Department of Computer and Information Sciences Towson University.
6. Iperf http://dast.nlanr.net/Projects/Iperf/